
Mind Reader
Final Project Report

6.883 Online Methods in Machine Learning
Guy Satat

1. Problem Statement
The mind reader machine developed here is motivated by Shannon’s "A Mind-reading(?)

Machine"(1953) and Hagelbarger's "SEER, A SEquence Extrapolating Robot"(1956). In this game the user

is playing against the machine, the user selects a bit (in this implementation it’s the right and left keys)

and the machine is trying to predict which key the user will click. If the machine guesses correctly it gets

a point, and otherwise the user gets a point.

If both players make their selection from a “real” i.i.d. process, they have equal chance of winning.

However, for humans it’s extremely hard to produce i.i.d. sequences, this is exactly what the machine is

aiming to exploit.

2. Game Tutorial
The game is developed in Matlab. To play the game run the Script.m file. In that file you can choose

the game target (default value is 50), and to ask the computer to generate i.i.d sequence for the user (this

will be discussed later).

Once the game is lunched the user should click either the left or right keys to make his selection, the

computer is making its selection in the background. The current score of the game is presented in a Matlab

figure, as seen below.

The figure shows the current scores towards the game’s target.

During the game the user can exit any time by hitting ‘q’. The user can also choose the cheat by hitting

‘c’, this will open a second figure with current algorithm status and algorithm decisions.

The game ends when the first player reaches the game goal, then the game summary figure is shown

(the same figure is shown during “cheating” mode).

Game summary figure. From top to bottom: The time evolving score. The algorithm’s error rate. The exponential

weights evolution for aggregated predictors based on type. The current exponential weights for all predictors, the
title provides the decision bias and the actual prediction.

3. Algorithm Description
The algorithm which defines the computer’s move is based on the Experts Setting as we learned in

the class. The experts are a set of predictors (described later) which attempt to predict the next user move

based on previous moves. The next subsection describes the various predictors, and will follow by a

description of the exponential weights algorithm to aggregate these predictors.

First, we define some notations. Right key is assigned +1, left key is assigned −1. The user strokes is

denoted by 𝑢(1. . 𝑛), and the algorithms predictions (strokes) is defined by 𝑏(1. . 𝑛), 𝑛 is the current game

turn. 𝑇 is the game target.

The predictors can operate on the immediate keystrokes sequence 𝑢(1. . 𝑛), or on the flipping

sequence defined by:

𝑓(𝑛) = {
1 𝑢(𝑛) == 𝑢(𝑛 − 1)

−1 𝑒𝑙𝑠𝑒

this sequence indicates flipping of bits, rather than the bits themselves.

3.1. Predictors

3.1.1. Bias Predictor
The bias predictor tracks the user strokes and searches for specific bias in the sequence (for example

tends to hit more right key). This predictor can be tuned to search for bias in a given history length 𝑚, this

allows to create multiple predictors each searching for bias with different memory. The expert prediction

is defined by:

𝑃𝐵,𝑢(𝑛 + 1) =
1

𝑚
∑ 𝑢(𝑛 − 𝑖)

𝑚

𝑖=1

In my implementation I used four Bias Predictors with memories: 𝑚 = 5, 10, 15, 20.

3.1.2. Flipping Bias Predictor
This essentially the same implementation of the Bias Predictor, but this predictor searches for bias in

flipping sequence (for example hitting the right key 𝑘 times followed by 𝑘 times left key has zero mean,

but the flipping sequence shows significant bias to hit the same key multiple times). This predictor can

also operate on a given history 𝑚, such that:

𝑃𝐵,𝑓(𝑛 + 1) = 𝑢(𝑛)
1

𝑚
∑ 𝑓(𝑛 − 𝑖)

𝑚

𝑖=1

In my implementation I used four Flipping Bias Predictors with memories: 𝑚 = 5, 10, 15, 20.

3.1.3. Pattern Predictor
This predictor detects keystroke patterns (for example [𝑅, 𝐿, 𝐿, 𝑅, 𝐿, 𝐿, …] , where 𝑅, 𝐿 stands for right

and left keys respectively). It searches for pattern length 𝑚 .This predictor operates by the following

procedure:

1. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑢(𝑛 − 𝑚 . . 𝑛)

2. 𝑖 = 𝑛, 𝑠𝑐𝑜𝑟𝑒𝑢 = 0

3. 𝑤ℎ𝑖𝑙𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 == 𝑢(𝑖 − 𝑚. . 𝑖)

4. 𝑠𝑐𝑜𝑟𝑒𝑢 = 𝑠𝑐𝑜𝑟𝑒𝑢 + 1

5. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑠ℎ𝑖𝑓𝑡(𝑝𝑎𝑡𝑡𝑒𝑟𝑛)

6. 𝑖 = 𝑖 − 1

7. end

where 𝑠ℎ𝑖𝑓𝑡(∙) produces a cyclic shift of the input.

The prediction is defined by:

𝑃𝑃,𝑢 = 𝑢(𝑛 − 𝑚)
min{𝑠𝑐𝑜𝑟𝑒𝑢, 2𝑚}

2𝑚

where the score defines the confidence of the prediction, here I defined an ideal case as a situation where

the pattern repeats itself two times.

In my implementation I choose to search for patterns of lengths: 𝑚 = 2,3,4,5,6.

3.1.4. Flipping Pattern Detector
This predictor is implemented exactly as the previous predictor, but it operates on the flipping

sequence instead (it searches for sequences such as: [𝑆, 𝑆, 𝐹, 𝑆, 𝑆, 𝐹, …], where 𝑆, 𝐹 stands for same key

and flipping respectively). The scoring algorithm operates exactly the same as the regular pattern

predictor, with replacing the sequence 𝑢(1. . 𝑛) by 𝑓(1. . 𝑛), and produces 𝑠𝑐𝑜𝑟𝑒𝑓. The prediction is then:

𝑃𝑃,𝑓 = 𝑢(𝑛 − 𝑚)
min{𝑠𝑐𝑜𝑟𝑒𝑓 , 2𝑚}

2𝑚

Similar to the previous predictor, the patterns lengths searched for are: 𝑚 = 2,3,4,5,6.

3.1.5. Shannon Inspired Predictor (user reaction predictor)
In his paper, Shannon proposed the user reacts to winning and losing. He proposed the user reactions

can be characterized in 8 ways:

1. User wins, played the same, wins again, he may play the same of differently.

2. User wins, played the same, losses, he may play the same of differently.

3. User wins, played differently, wins again, he may play the same of differently.

4. User wins, played differently, losses, he may play the same of differently.

5. User losses, played the same, wins again, he may play the same of differently.

6. User losses, played the same, losses, he may play the same of differently.

7. User losses, played differently, wins again, he may play the same of differently.

8. User losses, played differently, losses, he may play the same of differently.

While previous predictors ignored the winning / losing aspect of the game, this detector introduces

this emotional aspect. In the context of previous predictors, this predictor operates on the flipping

sequence 𝑓(1. . 𝑛) and on the user win/loss sequence defined by:

𝑤𝑢(𝑛) = {
1 𝑢(𝑛) ≠ 𝑏(𝑛)

−1 𝑒𝑙𝑠𝑒

In my implementation I extended the predictor to operate on user with variable memory (Shannon’s

proposal assumed the user has a memory length of 𝑚 = 1), for example the user might have a longer

memory. This predictor is implemented by keeping a state machine to track how the user played the last

time he was in a similar situation, the total number of states is just 22𝑚+1. Here, 𝑚 counts the memory

of results to previous player attempts, and the extra 1 counts first win/loss.

Each time the user plays, the predictor updates the state machine 𝑆𝑚 by the following procedure:

1. Based on 𝑓(𝑛 − 𝑚 − 1 … 𝑛 − 1), and 𝑤𝑢(𝑛 − 𝑚 − 2 … 𝑛 − 1) map to the appropriate state

index 𝑖.

2. If 𝑆𝑚(𝑖) == 0 then: %i.e. no meaningful history

𝑆𝑚(𝑖) = 0.3 𝑓(𝑛) %update the state with low score

3. Else if 𝑆𝑚(𝑖) 𝑓(𝑛) == 0.3 %i.e. this is the second time the user is doing the same thing

𝑆𝑚(𝑖) = 0.8 𝑓(𝑛) %update the state with higher score

4. Else if 𝑆𝑚(𝑖) 𝑓(𝑛) == 0.8 %i.e. this is the third time the user is doing the same thing

𝑆𝑚(𝑖) = 𝑓(𝑛) %update the state with highest score

5. Else %i.e. the user played different then the prediction

𝑆𝑚(𝑖) = 0 %update the state with zero confidence

The motivation behind these updates is to increase confidence of the decision if the user reacts the

same way as he did previously when encountered a similar situation.

Finally, the prediction of the next step is defined by: 𝑓(𝑛 − 𝑚. . 𝑛), and 𝑤𝑢(𝑛 − 𝑚 − 1. . 𝑛) map to

the appropriate state index 𝑖, and predicting 𝑃𝑅(𝑛 + 1) = 𝑆𝑚(𝑖).

In my implementation I choose these memory lengths: 𝑚 = [0,1,2,3]. The 𝑚 = 0 case corresponds

to a user that purely reacts to winning or losing, without memory of what brought the win/loss (for

example whenever losing flip the decision). While the longer memory predictors include the shorter ones,

due to the non-linear update when the user reacted different than expected, the short memory predictors

would react faster to change in behavior.

3.1.6. Hagelbarger's Inspired Predictor (“emotional” bot algorithm)
Hagelbarger proposed a very similar algorithm to Shannon’s, basically, he proposed the machine

should react to winning or losing and play the next step based on the last it encountered such a case.

Essentially this is exactly the same implementation as the previous approach, but operating on the

machine’s strokes and win/loss sequence:

𝑏𝑓(𝑛) = {
1 𝑏(𝑛) == 𝑏(𝑛 − 1)

−1 𝑒𝑙𝑠𝑒

𝑤𝑏(𝑛) = {
1 𝑢(𝑛) == 𝑏(𝑛)

−1 𝑒𝑙𝑠𝑒

 For this implementation I used the same memory lengths as the previous example.

3.2. Predictors aggregation, and algorithm decision
 There are a total of 26 predictors in my implementation (the number can easily be changed by adding

or removing memory lengths, this can be done in the game_parameters.m file). The predictors results are

aggregated with the exponential weights algorithm. We define an index 𝑗 = 1. . 𝑁 to run over all 𝑁 = 26

predictors, such that 𝑃𝑗(𝑛) is the 𝑗 − 𝑡ℎ expert prediction for time 𝑛. First we use “soft-max” to weigh all

the predictors based on their performance:

𝑊𝑗(𝑛 + 1) =
exp{−𝜂 ∑ |𝑢(𝑠) − 𝑃𝑗(𝑠)|𝑛

𝑠=1 }

∑ exp{−𝜂 ∑ |𝑢(𝑠) − 𝑃𝑗(𝑠)|𝑛
𝑠=1 }𝑁

𝑗=1

with: 𝜂 = √
log 𝑁

2𝑇−1
 .

This allows to choose a bias for the current decision:

𝑞𝑡(𝑛 + 1) = ∑ 𝑊𝑗(𝑛 + 1) 𝑃𝑗(𝑛 + 1)

𝑁

𝑗=1

Finally, the algorithm takes a random decision with bias 𝑞𝑡 such that:

𝑏(𝑛 + 1) = 𝑅𝑎𝑑𝑒𝑚𝑎𝑐ℎ𝑒𝑟 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝑞𝑡

4. Results
The game was played by several users, here are a couple examples of the final results:

Here are results for a computational random user playing against the algorithm (game target is

500):

We note that the game lasted for almost the maximum duration (997 turns out possible 999), that

the error rate is 50%, and that there is no preferred expert.

5. Brief Code Overview
Here is a short description of the code structure:

1. script.m

Starts the game, it allows to choose the game length and whether the user should play or the

computer should use an i.i.d user to compete with the algorithm.

2. game_parameters.m

Contains a list of predictors’ memories, use this file to add and remove experts.

3. game.m

Manages the game, including main game loop, asking the algorithm and user to play, display

results etc.

4. getkey.m

Handles keyboard interface (written by Jos van der Geest, downloaded from Matlab Central).

5. bot.m

Manages the algorithm, calls all experts to ask for predictions, runs the exponential weights

algorithm.

6. bias_detector.m

A class to implement a bias detector, has a memory parameter, and a flag to denote if it operates

on the 𝑢(𝑛) or 𝑓(𝑛) series.

7. pattern_detector.m

A class to implement the pattern detector, similarly has a pattern length parameter, and a flag

for the 𝑢(𝑛) or 𝑓(𝑛) series.

8. reactive_detector.m

A class to implement the reactive user, has a memory length parameter and keeps the

corresponding state machine. Receives as input either the user 𝑓(1. . 𝑛), 𝑤𝑢(1. . 𝑛) sequence

(Shannon like) or the algorithm strokes 𝑓𝑏(1. . 𝑛), 𝑤𝑏(1. . 𝑛) sequences (Hagelbarger like).

6. Future Work
There are several things to explore in the context of this work:

 Predictions:

o The Shannon and Hagelbarger detectors can be implemented on the direct key

strokes sequence.

o All detectors can be explored with other parameters (memory length, ways to score

the predictions).

o It would be interesting to explore other reactive based predictors (how people

respond to winning or losing).

o Reducing the number of experts to expedite learning (decreasing log 𝑁 /2𝑇).

 User behaviors:

o It seems that users behave different the first time they play the game and from a (not

statistically meaningful) observation it appears they do better the first time they play.

I suspect this is because they are less engaged the first time, and so can produce more

random sequences.

o It would be interesting to explore and understand how users react to this game, for

example do people have some common behavior model (similar to what Shannon

suggested). Putting this game online can help to evaluate this.

 Other ways to perform the task:

o Is it possible to solve this problem in the context of Cover’s algorithm? What are the

desired sequences? Can we learn them from many players?

o If the user produces non-random sequence, it means it’s compressible, that can allow

to predict the next bit.

